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Environmentally Dependent Conformational Scheme 1. Thermodynamic Cycle Involving Changes in
Preferences of Peptides Conformation §) and Environment (g= gas, ag= aqueous,
and prot= protein)
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The conformations adopted by peptides and proteins are W) = Wl
known to be dependent on their environmerit. The question o yiein environment are traditionally obtained from X-ray
i ifferent environments. For nstance, rotei foding nvolves. CYStAIOGTaphy: 14 Hence, we have obtained the relevant
a highly correlated transition from an uﬁfolded state with a high and y dihedral angle distributions directly from 63 protein

degree of solvent exposure to a folded state of relatively low crystal structures as deposited in the Brookhaven protein
g P . ‘ . y database (a full list of the proteins and further details are given
solvent exposure where many amino acid residues are sur-

rounded by protein. Hence, understanding the effects of changesin ref 15). . . . . o
in environment on ;[he conférmation of amino acid chains could The relationship between the various population distributions
enable the rationalization of certain underlving brinciples is illustrated in Scheme 1, where the probability distributions

overning the protein folding mechaniém ying p P are reflected in terms of torsional potentials of mean force (PMF)
’ In this gaperpwe present rgolecular dynémics simulations and obtained from the usual Boltzmann relationstfipMoving
experimental results which compare the different conformational Eg%gg:‘a{{xb %?f?e(r)grtl?lgc?nr‘g?rr:‘;?i%nesrzggél Sf;rg_ro_ta;ﬁvr"e;)z

X . . . X o D& = ,
preferences qf amino acid Chalns on changmg thglr ENVIrON=ile vertical changes correspond to the free energy of solvation
ments. We will explicitly consider three different environments, AW, g 0f a fixed conformation of the backbone on changing
i i g—aq
gﬁ\rﬂgﬁ}ntehni ggl% %T:?\?:\’/ea?rlljigo\l;vsé Sr? ;l:/gogssinrﬁeéh?hg,{o:ﬁ;nthe environment. In general, for conformationally flexible
: molecules AWsony = Wag(52) — Wy(E1) corresponds to the free

backbone conformation (determined $yandv) is, to a first ) g ! .
L= . . energy of solvation per residue during a conformational change,
approximation, essentially independent of the nature of the while AWea = WeroE2) — Wai(&1) corresponds to the free

amino acid side chain (with the exception of glycine and proline) . : > - X
. - f protein folding per residue in solution. Here, we are

and independent of the nature of the rest of the chain. energy o . . . L

In this F;pirit our gas phase model is a four alanine residue pnAn\}\?nlyAc\c/)\?cerned X'\'/t\? dlfferezizlss n theAP\;\V/IFs given by

eptide whose conformational preferences have been determined 'y — 2W1i—-2aq — ANL-2g = AWLg-ag = AWN2g -ag €.,

Eyploo ns stochastic dynamigs simulations using continuum hich represent the relative changes in solvation between two
solvents with relative permittivities of 1 and 80.Explicit different confqr_mat!ong, Of. the pept[de backbone. .
aqueous solvent simulations of the same tetrapeptide have alsq_' '€ Probability distributions obtained for the three different
been obtained over 10 ns for four different permutations of the environments have been conver_ted_ to erat|onaI PMFs and are
terminal group charge (N§i and Nh for the N terminus, C@" displayed in Figure 1. A gquantitative picture of the average

and CQH for the C terminus. All simulations were performed effect that the different environments have on the backbone
with the latest CHARMM all .atom force fielé Although the conformations adopted by amino acid chains is apparent. For

results are force field dependent, it is assumed that the thed¢> degree offfreedom,lflllhr?ctethods gt|)ve mlr:jlrfna arl]rou 0 .
underlying potential surface in the CHARMM model and the and 60, except for a small shift te-70° observed for the protein
limited sampling during 10 ns are sufficiently accurate for this inl\g!onnrgelnztb Rt? Iatrl\\//etljyilr’]ntghh free er;]ergy cronf(Ieratl;onfvnzai:]
coarse comparison with experiment. Tgandy distributions a observe € gas phase are aiso observe

obtained correspond to averages over the central residueseXp“C't a:qt_;eous and ;:ogtmuum ?(?uem:s fetr;]wronme?ts. '?OW'
(residues 2 and 3). In addition, the agqueous environment resuItsg\éeralgrt?oﬁgso??ﬁ:irlvg dﬁf?rzrnet rc:lg'rgrnccc))nfo?;eaggrrls%r(r)?? 1ons.
have been averaged over the different charge end groupeof)’ at 300 K are 97/3. 99/1. 100/0 Jand 92/8 for the 1.«
combinations. Probability distributions corresponding to a L ! ! ' | '
= 80, and explicit aqueous and protein environments, respec-
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Figure 1. Free energy profiles for thg (top) andy (bottom) degrees Figure 2. Solvation free energy differences for tige(top) andy
of freedom as a function of environment: vacuenrs 1 (thick solid), (bottom) degrees of freedom as a function of change in environment:
vacuume = 80 (thin solid), aqueous (thick dotted), and protein (thick vacuum to aqueous (thick solid), vacuum to protein (thick dotted), and
dashed). aqueous to protein (thick dashed).
environments, respectively. Interestingly, the very simpte solvation of the average rotational free energy surface on

80 continuum model produces results which are in near going from aqueous solution to a protein environment again
quantitative agreement with the explicit solvent simulations; the favors folded conformations in the region 6f3 This suggests
only significant difference being that the continuum model gives that desolvation of random coil like backbone conformations,
somewhat lower barriers to rotation. This is also supported by and their subsequent interaction with a protein matrix, is such
other theoretical results for small peptides which have suggestedthat folded configurations are favored by up to 20kJ/molper
that the major contribution to the change in PMF on going from degree of freedom on the average. However, by comparing
gas phase to aqueous solution is a simple dielectric effect. Small single-residue results with those for polypeptide chains,
Hence, the coarse continuum approximation appears to be awe neglected to include explicitly in Scheme 1 the configura-
satisfactory representation of solvent effects for these coarsetional entropy ¢-TAS) lost on folding? This entropy cost is
comparisons of nonpolar systems while providing a vast increase©n the order of 542 kJ/mol per residue ap/y pair?.,? with

in computational efficiency. total free energies of folding in ranging from20 to —40kJ/

For our purposes it is more informative to look at differences Mol for a medium size protein (100 residues). Therefore,
in effects between the various environments. The data presented@nvironmental stabilization free energies in the region of 20
in Figure 2 illustrate the changes in the torsional rotational kJ/mol pery degree of freedom are consistent with these
potential energy surfaces on moving from one environment to Numbers within the previously stated approximate framework.
another. Thus, the influence of the intramolecular potential has This semiquantitative picture of changes in peptide backbone
been removed in comparison with that in Figure 1. Datagfor ~ Solvation could prove _valuable in attempts to model and
are incomplete, due to insufficient sampling in the explicit understand protein folding pathwag/s:*
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